Wednesday, October 24, 2012

TISK Problems

- Simplify: -4x(3x 8)
- 2) Factor: $3x^3 9x^2 + 6x$
- 3) Find the value of x that makes the lines parallel.

We will have 2 Mental Math Questions today.

§4-5 More Congruent Triangles

Prove: SSA

Given: $\angle A \cong \angle D$, $\angle B \cong \angle E$, $\overline{BC} \cong \overline{EF}$

Prove: $\triangle ABC \cong \triangle DEF$

Given: $\overline{BC} \cong \overline{EF}$, $\overline{AB} \cong \overline{DE}$, $\angle C \cong \angle F$

Prove: $\triangle ABC \cong \triangle DEF$

Ways to Prove Triangles Congruent

- Def. of Congruent Triangles
 - CPCTC: Corresponding Parts of Congruent Triangles are Congruent
 - If corresponding parts are congruent, triangles are congruent
- SSS Postulate
- SAS Postulate
- ASA Postulate
- AAS Theorem
 - If two angles and a non-included side of one triangle are congruent to two angles and a non-included side of another triangle, then the triangles are congruent.

Example

• Given: $\overline{JC} \parallel \overline{NH}$ and \overline{CH} bisects \overline{JN}

• Prove: $\Delta CTJ \cong \Delta HTN$ \boldsymbol{H}

Proof

Statement	Reasons
I) $\overline{JC} \parallel \overline{NH}$, \overline{CH} bisects \overline{JN}	I) Given
2) $\overline{JT} \cong \overline{TN}$	2) Def. Segment Bisector:If a segment is bisected then it is divided into two congruent segments.
3) $\angle 1$ and $\angle 2$ are vertical $\angle s$	3) Assumed
4) ∠1 ≅ ∠2	4) Vertical \angle Th.: If two \angle s are vertical \angle s \Rightarrow \angle s are \cong
5) $\Delta CTJ \cong \Delta HTN$	5) AASTh.: If two $\angle s$ and a non-included side of one Δ are \cong to two corresponding $\angle s$ and a non-included side of another $\Delta \Rightarrow \Delta s$ are \cong .

Example

• Given: $\angle E \cong \angle C$ and $\overline{AE} \cong \overline{DC}$

• Prove: $\overline{CB} \cong \overline{EB}$

Proof

Statement	Reason
$I) \angle E \cong \angle C \text{ and } \overline{AE} \cong \overline{DC}$	I) Given
2) $\angle 1$ and $\angle 2$ are vertical $\angle s$	2) Assumed
3) ∠1 ≅ ∠2	3) Vertical \angle Th.: If two \angle s are vertical \angle s \Rightarrow \angle s are \cong
4) $\Delta EBA \cong \Delta CBD$	4) AAS Theorem: If two $\angle s$ and a non-included side of one Δ are \cong to two corresponding $\angle s$ and a non-included side of another $\Delta \Rightarrow \Delta s$ are \cong .
5) $\overline{CB} \cong \overline{EB}$	5) CPCTC: Corresponding Parts of $\cong \Delta s$ are \cong